Multiple solutions to quasi-linear elliptic Robin systems
نویسندگان
چکیده
Two opposite constant-sign solutions to a non-variational p-Laplacian system with Robin boundary conditions are obtained via sub-super-solution techniques. A third nontrivial one comes out by means of topological degree arguments.
منابع مشابه
Three Solutions For A Quasi-Linear Elliptic Problem∗
This paper shows the existence of at least three solutions for Navier problem involving the p(x)-biharmonic operator. Our technical approach is based on a theorem obtained by B. Ricceri.
متن کاملOn the Solutions of Quasi-linear Elliptic Partial Differential Equations*
The literature concerning these equations being very extensive, we shall not attempt to give a complete list of references. The starting point for many more modern researches has been the work of S. Bernstein,f who was the first to prove the analyticity of the solutions of the general equation with analytic and who was able to obtain a priori bounds for the second and higher derivatives of ...
متن کاملBoundary Behavior for Solutions of Singular Quasi–linear Elliptic Equations
In this paper, for 1 γ 3 our main purpose is to consider the quasilinear elliptic equation: div(|∇u|m−2∇u) + (m− 1)u−γ = 0 on a bounded smooth domain Ω ⊂ RN , N > 1 . We get some first-order estimates of a nonnegative solution u satisfying u = 0 on ∂Ω . For γ = 1 , we find the estimate: limx→∂Ω u(x)/p(δ (x)) = 1 , where p(r) ≈ r m √ m log(1/r) near r = 0 , δ (x) denotes the distance from x to ∂...
متن کاملMultiple Solutions for Asymptotically Linear Resonant Elliptic Problems
In this paper we establish the existence of multiple solutions for the semilinear elliptic problem (1.1) −∆u = g(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a function g: Ω×R→ R is of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the c...
متن کاملSolutions to Problems for Quasi-Linear PDEs
(a) At what time ts and position xs does a shock first form? (b) Identify the important values of s and find the corresponding characteristics. Sketch the characteristics and indicate the region in the xt-plane in which the solution is well-defined (i.e. does not break down). (c) Construct tables as in class for the x and u values at the important values of s for times t = 0, 2/3, 4/3. Use thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis-real World Applications
سال: 2023
ISSN: ['1878-5719', '1468-1218']
DOI: https://doi.org/10.1016/j.nonrwa.2022.103818